Er zijn 3876 resultaten gevonden

door arie
11 nov 2008, 09:18
Forum: Wiskundige puzzels
Onderwerp: Lotto kans
Reacties: 6
Weergaves: 8519

Re: Lotto kans

Totaal aantal mogelijke trekkingen: 45C6 = 8145060
4 goed: 4C4 x 41C2 = 820
3 goed: 4C3 x 41C3 = 42640
2 goed: 4C2 x 41C4 = 607620
1 goed: 4C1 x 41C5 = 2997592
0 goed: 4C0 x 41C6 = 4496388
Dus kans op
4 goed: 820/8145060
3 goed: 42640/8145060
etc.
Kom je hier ook op uit?
door arie
10 nov 2008, 17:19
Forum: Wiskundige puzzels
Onderwerp: Lotto kans
Reacties: 6
Weergaves: 8519

Re: Lotto kans

Het gaat hier om combinaties: nCr = n!/[r!*(n-r)!] Als je r nummers uit n nummers wilt trekken (volgorde van belang), zijn er voor de eerste n mogelijkheden, voor de 2e n-1 mogelijkheden, ......., en voor de r-de (n-r+1) Dit zijn n!/(n-r)! mogelijkheden als de volgorde van belang is. Omdat de volgor...
door arie
10 nov 2008, 16:54
Forum: Voortgezet onderwijs / 1ste graad ASO-TSO-BSO
Onderwerp: bewijs goniometrische identiteit
Reacties: 3
Weergaves: 5493

Re: bewijs goniometrische identiteit

Wat komt er uit dit product:
(x + y) * (x^2 - xy + y^2) ??
Gebruik dit resultaat voor jouw probleem.
door arie
10 nov 2008, 16:38
Forum: Wiskundige puzzels
Onderwerp: Lotto kans
Reacties: 6
Weergaves: 8519

Re: Lotto kans

Dit soort problemen is meestal een kwestie van tellen. (A) Kijk eerst hoeveel mogelijke trekkingen er zijn: Hoeveel mogelijkheden zijn er om 6 nummers uit 45 nummers te trekken (niets terugleggen, volgorde niet belangrijk)? (B-1) Bepaal dan het aantal mogelijke trekkingen hiervan waarin jouw nummers...
door arie
10 nov 2008, 15:49
Forum: Voortgezet onderwijs / 1ste graad ASO-TSO-BSO
Onderwerp: bewijs goniometrische identiteit
Reacties: 3
Weergaves: 5493

Re: bewijs goniometrische identiteit

deel het linker lid uit: (x^3 + y^3) is deelbaar door (x + y).
werk in het rechter lid de hoekverdubbeling weg (schrijf sin(2*alfa) in termen/producten van sin(alfa) en cos(alfa)).
Kom je er zo uit?
door arie
08 nov 2008, 20:44
Forum: Analyse & calculus
Onderwerp: ik moet de graden weten van deze cilinder.
Reacties: 1
Weergaves: 3549

Re: ik moet de graden weten van deze cilinder.

Ik denk dat je een afgeknotte kegel bedoelt, zie bijvoorbeeld halverwege de pagina http://nl.wikibooks.org/wiki/Wiskunde/Volume Kegel 1: diameter bovenkant 10.5, onderkant 11.5; hoogte 15: tangens hellingshoek = 15/0.5 ( horizontale waarde helling = (11.5-10.5)/2 = 0.5; verticaal 15) hellingshoek = ...
door arie
07 nov 2008, 20:34
Forum: Hoger onderwijs - overig
Onderwerp: Financiele rekenkunde / Rekenmachineprobleem
Reacties: 1
Weergaves: 3231

Re: Financiele rekenkunde / Rekenmachineprobleem

[+/-] verandert het teken van de waarde van het betreffende getal. Tekenwisseling komt op vrijwel alle rekenmachines voor, vaak als andere toets, bijvoorbeeld: - [(-)] - [-] - [CHS] of [chs] (= change sign) of iets wat daarop lijkt. Ik ben erg benieuwd welke rekenmachine je precies gebruikt (merk en...
door arie
07 nov 2008, 15:19
Forum: Algemeen
Onderwerp: modeleren
Reacties: 5
Weergaves: 8589

Re: modeleren

Dit is afhankelijk waar het model voor is en hoe goed je de overlap wilt hebben. Vaak volstaan we al met een lineaire benadering, jij gebruikt mogelijk een parabool iets in de vorm y=c1+c2*wortel(x+c3). De voorkant van de gegeven curve heeft een soort s-vorm die doet denken aan logistische groei (zi...
door arie
07 nov 2008, 15:06
Forum: Hoger onderwijs - overig
Onderwerp: Sensoren positie (xyz coordinaten) uitrekenen
Reacties: 3
Weergaves: 5329

Re: Sensoren positie (xyz coordinaten) uitrekenen

Bol1: x^2 + y^2 + z^2 = r1^2 Bol2: (x-15)^2 + y^2 + z^2 = r2^2 Bol3: x^2 + (y-15)^2 + z^2 = r3^2 ofwel: Bol1: x^2 + y^2 + z^2 = r1^2 Bol2: x^2 - 30x + 225 + y^2 + z^2 = r2^2 Bol3: x^2 + y^2 - 30y + 225 + z^2 = r3^2 Bol2 - Bol1: -30x + 225 = r2^2 - r1^2 x = (225 - r2^2 + r1^2)/30 dus x nu bekend Bol3...
door arie
07 nov 2008, 14:53
Forum: Wiskundige puzzels
Onderwerp: CO2 berekening pakketzending
Reacties: 3
Weergaves: 7729

Re: CO2 berekening pakketzending

Als je de klant VOORAF een voorspelling wilt geven kan dit inderdaad alleen op basis van gemiddelden. Deze gegevens zal een distributeur wel hebben (jaarafstand per vrachtwagen, dieselverbruik per vrachtwagen, afstanden van klanten tot distributiecentrum etc). Als je alle factoren die je noemt hieri...
door arie
06 nov 2008, 15:52
Forum: Wiskundige puzzels
Onderwerp: CO2 berekening pakketzending
Reacties: 3
Weergaves: 7729

Re: CO2 berekening pakketzending

De totale CO2 emissie hangt alleen af van de verbruikte liters diesel, dus: CO2 emissie van een rit = aantal verbruikte liters diesel * 2650 gram/liter en de totale prijs hiervoor = gramprijs * aantal verbruikte liters diesel * 2650 gram/liter. Wil je dit bij de klanten in rekening brengen zou ik da...
door arie
06 nov 2008, 15:28
Forum: Hoger onderwijs - overig
Onderwerp: Sensoren positie (xyz coordinaten) uitrekenen
Reacties: 3
Weergaves: 5329

Re: Sensoren positie (xyz coordinaten) uitrekenen

Je weet alle afstanden van het object tot de 3 receivers en de locatie van de receivers. De punten die op vaste afstand van een gegeven punt liggen vormen een bol. Je moet hier dus de doorsnede van 3 bollen berekenen. Algemene formule voor een bol: (x-x0)^2 + (y-y0)^2 + (z-z0)^2 = r^2. waarbij (x0,y...
door arie
04 nov 2008, 10:02
Forum: Hoger onderwijs - overig
Onderwerp: Coördinaten herberekenen nadat ze verplaatst zijn
Reacties: 5
Weergaves: 6212

Re: Coördinaten herberekenen nadat ze verplaatst zijn

Bij verplaatsen (translatie) en draaien (rotatie) blijven alle afstanden altijd gelijk. Gegeven een samenstelling van translatie(s) en rotatie(s) kunnen we dus, als er van twee verschillende punten A en B de beeldpunten A' en B' gegeven zijn, voor elk punt P het beeld P' bepalen. Let wel: de samenst...
door arie
04 nov 2008, 09:39
Forum: Wiskundige puzzels
Onderwerp: 4 ringen die elkaar samenhouden
Reacties: 1
Weergaves: 3927

Re: 4 ringen die elkaar samenhouden

Buig de ringen in een soort hoefijzervorm zoals hieronder aangegeven (b=blauw, r=rood, g=groen, z=zilver). Elk hoefijzer grijpt een poot van het andere hoefijzer: de buitenste baan loopt achter langs (kleine letters), de binnenste baan voorlangs (grote letters) De eerste 3 ringen kan je vooraf al di...
door arie
02 nov 2008, 13:42
Forum: Wiskundige puzzels
Onderwerp: Top 8?
Reacties: 5
Weergaves: 7197

Re: Top 8?

Dit is een leuk probleem! Ik heb echter nog een aantal vragen en opmerkingen: (1) Hoe gaat de wedstrijdleiding om met een oneven aantal deelnemers?? Als er bijvoorbeeld 13 spelers zijn, zou ieder 4 wedstrijden moeten spelen, waarvan de eerste om uit te maken of je in de top 8 komt. Dan blijft er alt...