Onbepaalde integraal rationale functie

Integraalrekening, afgeleiden, rijen, convergentie & divergentie van reeksen, meervoudige integratie.
nielzs
Vast lid
Vast lid
Berichten: 27
Lid geworden op: 09 jul 2014, 11:18

Re: Onbepaalde integraal rationale functie

Bericht door nielzs » 25 jul 2014, 20:30

Het spijt me, maar ik zou het echt niet weten... Dit is een werkwijze die ik nog nooit eerder heb tegengekomen.

SafeX
Moderator
Moderator
Berichten: 14248
Lid geworden op: 29 dec 2005, 11:53

Re: Onbepaalde integraal rationale functie

Bericht door SafeX » 25 jul 2014, 20:48

Maar je kan toch wel de breuk:
SafeX schreef:

naar x differentiëren (de notatie d(...) betekent differentiëren naar de variabele)

SafeX
Moderator
Moderator
Berichten: 14248
Lid geworden op: 29 dec 2005, 11:53

Re: Onbepaalde integraal rationale functie

Bericht door SafeX » 26 jul 2014, 16:53

Probeer eens:


nielzs
Vast lid
Vast lid
Berichten: 27
Lid geworden op: 09 jul 2014, 11:18

Re: Onbepaalde integraal rationale functie

Bericht door nielzs » 27 jul 2014, 21:30

SafeX schreef:Maar je kan toch wel de breuk:
SafeX schreef:

naar x differentiëren (de notatie d(...) betekent differentiëren naar de variabele)

Hierop had ik reeds gereageerd, maar de reactie is blijkbaar niet goed doorgekomen. Bij differentiatie van die breuk verkrijg ik:



De door u vermelde laatste integraal zou ik oplossen door x²+1 = t te stellen. Dan is 2x dx = dt of x dx = dt. De integraal wordt dan:


SafeX
Moderator
Moderator
Berichten: 14248
Lid geworden op: 29 dec 2005, 11:53

Re: Onbepaalde integraal rationale functie

Bericht door SafeX » 27 jul 2014, 21:49

nielzs schreef:De door u vermelde laatste integraal zou ik oplossen door x²+1 = t te stellen. Dan is 2x dx = dt of x dx = dt. De integraal wordt dan:

Ok! Kan je nu ook de volgende oplossen:



Later kijken we weer naar de oorspronkelijke integraal ...

nielzs
Vast lid
Vast lid
Berichten: 27
Lid geworden op: 09 jul 2014, 11:18

Re: Onbepaalde integraal rationale functie

Bericht door nielzs » 27 jul 2014, 22:22

Ja hoor. Ik herschrijf de teller als volgt:

1 = 1+x²-x²

Vervolgens splitsen van de integraal:



Bij de tweede integraal moet nog een kwadraat in de noemer staan. Met de code krijg ik hem er helaas niet bij. Nu komt de eerste integraal overeen met Bgtan x. Voor de tweede ga ik als volgt te werk: ik herschrijf x² als x * x. Vervolgens neem ik x dx samen. Dit komt overeen met 1/2 d (1+x²). De integraal wordt dan:



=>

Vervolgens partiële integratie toepassen:



Om uiteindelijk te komen tot:


SafeX
Moderator
Moderator
Berichten: 14248
Lid geworden op: 29 dec 2005, 11:53

Re: Onbepaalde integraal rationale functie

Bericht door SafeX » 28 jul 2014, 08:34

Ok, dan hebben we nu de bouwstenen ...

Bekijk de noemer 2x^2+2x+5, verm met 2 dat geeft 4x^2+4x+10=(2x+1)^2+9

Stel dus (2x+1)/3=u, hoe kan je nu de integrand in u uitdrukken ...

nielzs
Vast lid
Vast lid
Berichten: 27
Lid geworden op: 09 jul 2014, 11:18

Re: Onbepaalde integraal rationale functie

Bericht door nielzs » 28 jul 2014, 20:37

Ik raak er nog steeds niet aan uit. Met name de teller krijg ik maar niet herschreven:



Noemer:

Dit wordt verder vereenvoudigd tot:



Stel nu: (2x+1)/3 = t => 2/3 dx = dt of dx = 3/2 dt. De integraal wordt dan:



Hoe moet het verder (hoe schrijf ik 16-x^2 in termen van t)? Dit vereist denk ik een speciale truc.

Opmerking: Moest in de opgave het kwadraat niet in de noemer aanwezig zijn, dan zou ik 16-x^2 zodanig herschrijven zodat de noemer hierin teruggevonden wordt

SafeX
Moderator
Moderator
Berichten: 14248
Lid geworden op: 29 dec 2005, 11:53

Re: Onbepaalde integraal rationale functie

Bericht door SafeX » 28 jul 2014, 20:52

Je moet eerst de integrand splitsen in twee termen, bedenk dat de teller een term -x^2 bevat dus kan je de teller zodanig aanpassen dat je (T&N) kunt delen door een factor 2x^2+2x+5 ...

nielzs
Vast lid
Vast lid
Berichten: 27
Lid geworden op: 09 jul 2014, 11:18

Re: Onbepaalde integraal rationale functie

Bericht door nielzs » 28 jul 2014, 21:31

Dus ik moet 16-x² herschrijven? Moet dit als volgt:

-x²+16 = -1/2 (2x^2+2x +5) + (x + 37/2) ?

SafeX
Moderator
Moderator
Berichten: 14248
Lid geworden op: 29 dec 2005, 11:53

Re: Onbepaalde integraal rationale functie

Bericht door SafeX » 28 jul 2014, 21:39

Precies!

nielzs
Vast lid
Vast lid
Berichten: 27
Lid geworden op: 09 jul 2014, 11:18

Re: Onbepaalde integraal rationale functie

Bericht door nielzs » 28 jul 2014, 21:45

Bedankt!!

SafeX
Moderator
Moderator
Berichten: 14248
Lid geworden op: 29 dec 2005, 11:53

Re: Onbepaalde integraal rationale functie

Bericht door SafeX » 29 jul 2014, 07:15

Ok, succes verder.

Plaats reactie