Breuk in macht

Integraalrekening, afgeleiden, rijen, convergentie & divergentie van reeksen, meervoudige integratie.

Breuk in macht

Berichtdoor damas » 13 Feb 2017, 22:28

Hoi,

Ik begrijp niet waarom x^(1 1/2)=8 opgelost wordt als x=8^2/3
Dit staat als oplossing in het boek Wiskunde voor bedrijfseconomen dus zou correct moeten zijn.
Alvast bedankt!
damas
Nieuw lid
Nieuw lid
 
Berichten: 1
Geregistreerd: 13 Feb 2017, 22:20

Re: Breuk in macht

Berichtdoor parref » 14 Feb 2017, 01:01

Beste Damas,
Zoals je vraag hier geplaatst wordt kan dit niet. Ik denk dan ook dat er een foutje in de opgave is of dat U een typfoutje hebt gemaakt.
Ik vermoed dat de opgave moet zijn :
toon aan dat X^(1+1/2)= 8 opgelost wordt als X = 8^(2/3).
Kunt U nu verder ?
Groetjes,
parref.
parref
Nieuw lid
Nieuw lid
 
Berichten: 24
Geregistreerd: 08 Sep 2013, 00:05

Re: Breuk in macht

Berichtdoor David » 14 Feb 2017, 11:34

Soms wordt met 1 1/2 gebruikt als 1+1/2.
Stap 1 van het oplossen van een probleem is te erkennen dat je een probleem hebt.
(Raffiek Torreman)
David
Moderator
Moderator
 
Berichten: 4935
Geregistreerd: 14 Mei 2009, 16:22

Re: Breuk in macht

Berichtdoor arno » 14 Feb 2017, 20:14

Denk eens aan de regel dat en kijk eens hoe je daarmee op het antwoord uitkomt.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel
arno
Vergevorderde
Vergevorderde
 
Berichten: 1760
Geregistreerd: 25 Dec 2008, 16:28


Terug naar Analyse & calculus

Wie is er online?

Gebruikers in dit forum: Geen geregistreerde gebruikers en 4 gasten

Wie is er online?

Er zijn in totaal 4 gebruikers online :: 0 geregistreerd, 0 verborgen en 4 gasten (Gebaseerd op de gebruikers die actief waren gedurende 5 minuten)
De meeste gebruikers ooit tegelijkertijd online was 649 op 31 Okt 2014, 18:45

Gebruikers in dit forum: Geen geregistreerde gebruikers en 4 gasten
Copyright © 2009 Afterburner - Free GPL Template. All Rights Reserved.