In de geschiedenis van de wiskunde is het getalsysteem uitgebreid om nieuwe problemen op te lossen.
Door over te gaan van het ene systeem naar het andere kunnen telkens nieuwe problemen opgelost worden.
Vooral de stap van de reële naar de complexe getallen heeft veel inzicht bijgebracht. Ik denk bvb. aan het oplossen van reële oneigenlijke integralen via complexe contourintegratie of het voorstellen van oplossingen van de 2D Laplace vergelijking door holomorfe functies.
Door de reële getallen uit te breide naar de complexe getallen, ga je eigenlijk van iets eendimensionaals naar iets 2 dimensionaals. Je zou dus veronderstellen dat je dit verder zou kunnen uitbreiden naar 3, 4 en meer dimensies om nog dieper inzicht te krijgen in de wiskunde.
Wat ik me nu afvraag is waarom alles in grote lijnen gestopt is bij de complexe getallen en er geen verdere uitbreidingen zijn die de wiskunde verder brengen naar een hoger niveau, of heeft er iemand ideeën voor verdere uitbreidingen?
p.s. Ik weet wel dat er een uitbreiding is naar quaternionen, die in de theoretische fysica wel enige toepassing hebben, maar echt heel veel brengt dat niet bij.