Steekproef standaardafwijking

Continue & discrete verdelingen, toevalsveranderlijken, betrouwbaarheidsintervallen, correlaties.
Plaats reactie
SIK
Nieuw lid
Nieuw lid
Berichten: 3
Lid geworden op: 30 mei 2019, 15:09

Steekproef standaardafwijking

Bericht door SIK » 06 jun 2019, 20:41

Wat als ik een populatie heb met q elementen met een gemiddelde mu en een standaardafwijking sigma.

Als ik het steekproefgemiddelde bereken van een steekproef met grootte n heeft dit hetzelfde gemiddelde maar een standaardafwijking van sigma/sqrt(n)

Ik vroeg me af wat er gebeurt als ik een 'steekproef' zou nemen die q elementen bevat, of misschien q-1 elementen. Is de sigma van de steekproef dan nog steeds sigma/sqrt(q) of sigma/sqrt(q-1)? Of convergeert dit naar de populatie-sigma?

arie
Moderator
Moderator
Berichten: 3556
Lid geworden op: 09 mei 2008, 09:19

Re: Steekproef standaardafwijking

Bericht door arie » 08 jun 2019, 05:52

Jij beschrijft de standard error of the mean (SEM), en die wordt steeds kleiner naarmate n groter wordt.

Noem
\(\mu\) = populatie gemiddelde
\(\sigma\) = populatie standaard afwijking
\(N\) = grootte van de populatie
\(\bar{x}\) = steekproef gemiddelde
\(s\) = steekproef standaard afwijking
\(n\) = grootte van de steekproef

dan
schat je met \(\bar{x}\) de grootte van \(\mu\)
en
schat je met \(s\) de grootte van \(\sigma\)

Hierbij is

\(\mu = \frac{1}{N} \sum_{i=1}^N x_i\)

\(\sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i-\mu)^2 }\)

\(\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i\)

\(s = \sqrt{ \frac{1}{n-1} \sum_{i=1}^n (x_i-\bar{x})^2 }\)

(zie bv. https://en.wikipedia.org/wiki/Standard_deviation)



De standard error of the mean (SEM) wordt gegeven door

\(\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}\)

Deze schat niet de grootte van \(\sigma\), maar geeft de standaardafwijking van \(\bar{x}\) voor een herhaald aantal steekproeven (elk met een grootte van n).
Dit is dus een maat voor de spreiding van \(\bar{x}\), en dus hoe goed \(\bar{x}\) het populatie gemiddelde \(\mu\) zal benaderen.

Hoe groter n, hoe kleiner \(\sigma_{\bar{x}} \), dus hoe kleiner de spreiding van steekproef gemiddelde \(\bar{x}\) en hoe beter \(\bar{x}\) een benadering van \(\mu\) is.

(zie bv. https://en.wikipedia.org/wiki/Standard_ ... f_the_mean)

Plaats reactie