berekening relatieve fout

Continue & discrete verdelingen, toevalsveranderlijken, betrouwbaarheidsintervallen, correlaties.
Plaats reactie
Gebruikersavatar
wnvl
Vergevorderde
Vergevorderde
Berichten: 1490
Lid geworden op: 05 okt 2011, 16:30

berekening relatieve fout

Bericht door wnvl » 25 mar 2013, 22:23

@arie Je gaat er vanuit dat de absolute fout op F1 en F2 dezelfde is. Ik denk dat dat niet de bedoeling is. Alleen de spreiding op deze absolute fout is dezelfde.

arie
Moderator
Moderator
Berichten: 3570
Lid geworden op: 09 mei 2008, 09:19

Re: berekening relatieve fout

Bericht door arie » 25 mar 2013, 22:40

wnvl schreef:@arie Je gaat er vanuit dat de absolute fout op F1 en F2 dezelfde is. Ik denk dat dat niet de bedoeling is. Alleen de spreiding op deze absolute fout is dezelfde.
Nee, in mijn formules hierboven is de relatieve fout hetzelfde, namelijk delta = 5% = 0.05 (zoals in de opgave gegeven).
Dus voor alle F_i geldt:



dus:



maar


Gebruikersavatar
wnvl
Vergevorderde
Vergevorderde
Berichten: 1490
Lid geworden op: 05 okt 2011, 16:30

Re: berekening relatieve fout

Bericht door wnvl » 25 mar 2013, 23:08

Mijn commentaar was fout geformuleerd. Ik bedoelde eigenlijk.

@arie Je gaat er vanuit dat de relatieve fout op F1 en F2 dezelfde is. Ik denk dat dat niet de bedoeling is. Alleen de spreiding op deze relatieve fout is dezelfde.

Ter verduidelijking:

Het kan bvb zijn dat

exacte waarde F1=F1gemeten *(1.03) en
exacte waarde F2=F2gemeten*(0.96)

Jij gaat er van uit dat de exacte relatieve fout bij een concrete meting altijd dezelfde is bij beide krachten

exacte waarde F1=F1gemeten *(1.03) en
exacte waarde F2=F2gemeten*(1.03)

beide relatieve fouten kunnen echter verschillen, maar de spreiding bij verschillende metingen van de fouten moet dezelfde zijn.

arie
Moderator
Moderator
Berichten: 3570
Lid geworden op: 09 mei 2008, 09:19

Re: berekening relatieve fout

Bericht door arie » 26 mar 2013, 00:21

wnvl schreef:Het kan bvb zijn dat

exacte waarde F1=F1gemeten *(1.03) en
exacte waarde F2=F2gemeten*(0.96)
Klopt.

wnvl schreef: Jij gaat er van uit dat de exacte relatieve fout bij een concrete meting altijd dezelfde is bij beide krachten

exacte waarde F1=F1gemeten *(1.03) en
exacte waarde F2=F2gemeten*(1.03)

beide relatieve fouten kunnen echter verschillen, maar de spreiding bij verschillende metingen van de fouten moet dezelfde zijn.
Klopt niet: de delta hierboven is de maximale relatieve afwijking.
Zie ook de vraagstelling van Christa1901: ..."De beide krachten zijn gemeten met een mogelijke fout van 5% ..."
De gemeten waarde kan ook minder dan een factor delta (= 0.05) van de werkelijke waarde af liggen.
Het lijkt me dat (1 +/- delta) de relatieve spreiding is die jij bedoelt.

Gebruikersavatar
wnvl
Vergevorderde
Vergevorderde
Berichten: 1490
Lid geworden op: 05 okt 2011, 16:30

Re: berekening relatieve fout

Bericht door wnvl » 26 mar 2013, 19:51

Mmm, ik denk dat er mogelijks nog een misverstand is.
wnvl schreef:eerste vraag:


Eerste stap is het berekenen van de partiële afgeleiden naar a, F1 en F2.



Voor alle duidelijkheid, ik kom op





Met jou interpretatie van de fout als maximale fout kom ik dan op



Is dat dan ook jou oplossing?

arie
Moderator
Moderator
Berichten: 3570
Lid geworden op: 09 mei 2008, 09:19

Re: berekening relatieve fout

Bericht door arie » 27 mar 2013, 00:29

Nee, voor de totale relatieve fout gebruik ik:



in dit geval dus: 1 +/- 0.12
en omdat aF2/(F1+F2) = 3 wordt de absolute fout 0.36.

PS:
onderwerp gesplitst: deze discussie gaat beduidend dieper dan vraag in oorspronkelijke topic:
viewtopic.php?f=23&t=9421

Gebruikersavatar
wnvl
Vergevorderde
Vergevorderde
Berichten: 1490
Lid geworden op: 05 okt 2011, 16:30

Re: berekening relatieve fout

Bericht door wnvl » 27 mar 2013, 19:06

Ik denk dat je vergeet dat teller en noemer in dit geval niet onafhankelijk zijn. In beiden komt F2 voor.

Stel bvb dat F2=10000000 en F1=1

In dat geval gaat gelden dat b=a (F1 is te verwaarlozen en F2 deel je weg in teller en noemer) en de relatieve fout zal zijn. Jou formule gaat nog altijd als relatieve fout . Merk op dat mijn formule met de partieel afgeleiden, wel een juist antwoord zou geven.

Als de formule voor b was



,dan was het een ander verhaal.

arie
Moderator
Moderator
Berichten: 3570
Lid geworden op: 09 mei 2008, 09:19

Re: berekening relatieve fout

Bericht door arie » 27 mar 2013, 20:31

Je hebt gelijk.
Ik had niet gelet op die afhankelijkheid.

Jouw formule is dus de correcte:







waarmee het antwoord 0.33 wordt.

De cursus van Christa1901 gaat echter niet zo ver: die houden het op 0.36 als antwoord...

Plaats reactie