Berekenen booglengte met integraalrekening

Dit forum is voor het voortgezetonderwijs (of 2de/3de graad ASO), als je in de bovenbouw zit. We gaan er vanuit dat je een Grafische Rekenmachine hebt.
R10111001
Vast lid
Vast lid
Berichten: 37
Lid geworden op: 07 jul 2015, 15:33

Re: Berekenen booglengte met integraalrekening

Bericht door R10111001 » 20 feb 2016, 21:15

arie schreef:
We zoeken nu constanten A en B, zodanig dat deze breuk gelijk is aan de oorspronkelijke breuk



Dan moet dus gelden:

A + B = 0
B - A = 1

Wat is de oplossing van dit stelsel van 2 vergelijkingen met 2 onbekenden (A en B)?
Dan is en . Ik heb de oplossing inmiddels gevonden en ben uitgegaan van ongeveer hetzelfde: . Het enige verschil is dat op deze wijze geldt en . Ik heb vervolgens de ondergrens en de bovengrens van de integraal uitgedrukt in met als ondergrens en als bovengrens en bekom nu hetzelfde antwoord als in het boek (). Ontzettend bedankt voor je geduld en alle hulp, ik had er alleen nooit uitgekomen!

SafeX
Moderator
Moderator
Berichten: 14223
Lid geworden op: 29 dec 2005, 11:53

Re: Berekenen booglengte met integraalrekening

Bericht door SafeX » 20 feb 2016, 22:47

Mooi, en probeer nu de andere substitutie ...

R10111001
Vast lid
Vast lid
Berichten: 37
Lid geworden op: 07 jul 2015, 15:33

Re: Berekenen booglengte met integraalrekening

Bericht door R10111001 » 25 feb 2016, 16:27

SafeX schreef:Mooi, en probeer nu de andere substitutie ...
De andere substitutie is inderdaad minder omslachtig omdat we dan met één substitutie toekunnen:

met zodat en .

We kunnen de integraal dan herschrijven als en kunnen dan op analoge wijze oplossen met behulp van breuksplitsing. Rest mij tot besluit nog één vraag omtrent dit onderwerp. In mijn boek wordt gegeven als voorbeeld van een integraal die niet bepaald kan worden door middel van primitiveren, maar hoe kun je dat weten? Ofwel, hoe is te bepalen dat een integraal wel of niet geprimitiveerd kan worden?

SafeX
Moderator
Moderator
Berichten: 14223
Lid geworden op: 29 dec 2005, 11:53

Re: Berekenen booglengte met integraalrekening

Bericht door SafeX » 25 feb 2016, 16:57

Het vb dat je noemt is wel duidelijk omdat een factor x ontbreekt ...
In 't algemeen is dat vaak niet eenvoudig en zal proberen misschien nodig zijn ...

Opm: in jouw opgave druk je x uit in u, prima! Maar voor de grenzen van u heb je dat niet nodig ... ?

Plaats reactie