Logaritmen bereken x

Dit forum is voor het voortgezetonderwijs (of 2de/3de graad ASO), als je in de bovenbouw zit. We gaan er vanuit dat je een Grafische Rekenmachine hebt.
Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Logaritmen bereken x

Bericht door Westerwolde » 27 nov 2016, 10:59

Hallo allemaal,

Ik ben bezig met mijn huiswerk uit het hoofdstuk logaritmen, hierin komt de volgende som voor :

bereken x uit : ^4log(25) = ^8log(x)

Hoe pak ik dergelijke som aan ?

SafeX
Moderator
Moderator
Berichten: 14247
Lid geworden op: 29 dec 2005, 11:53

Re: Logaritmen bereken x

Bericht door SafeX » 27 nov 2016, 11:30

Ken je de definitie van de logaritme?
Ken je de RR voor het werken met logaritmen? Zo ja, je moet de vierde RR gebruiken ...

Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Logaritmen bereken x

Bericht door Westerwolde » 27 nov 2016, 12:36

Ja dat is : ^g log a = x <=> g^x = a

Ik ken meerdere rekenregels voor logaritmen, bedoel je onderstaande met de vierde ?

^g log (a) = ^p log (a) / ^p log (g) ?

Of ^p log (a^n) = n^p log (a) ?

SafeX
Moderator
Moderator
Berichten: 14247
Lid geworden op: 29 dec 2005, 11:53

Re: Logaritmen bereken x

Bericht door SafeX » 27 nov 2016, 12:44

Westerwolde schreef:^g log (a) = ^p log (a) / ^p log (g)
Kies voor p=2 ...

kan je na deze keuze zien waarom je 2 kiest

Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Logaritmen bereken x

Bericht door Westerwolde » 27 nov 2016, 13:08

SafeX schreef:
Westerwolde schreef:^g log (a) = ^p log (a) / ^p log (g)
Kies voor p=2 ...

kan je na deze keuze zien waarom je 2 kiest

Oke dan krijgen we: ^g log (a) = ^2 log (a) / ^2 log (g)

Ik zie niet waarom we 2 kiezen, maar ik zie wel dat deze twee grondtallen gelijk zijn ..

arno
Vergevorderde
Vergevorderde
Berichten: 1867
Lid geworden op: 25 dec 2008, 16:28
Locatie: Beek en Donk, Noord-Brabant

Re: Logaritmen bereken x

Bericht door arno » 27 nov 2016, 16:14

Stel , dan geldt dat , dus 3u = ..., dus u = ... Stel , dan geldt dat , dus 2v = ..., dus v = ... Wat is dus de gezochte waarde van x?
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Logaritmen bereken x

Bericht door Westerwolde » 27 nov 2016, 19:09

arno schreef:Stel , dan geldt dat , dus 3u = 8, dus u = 5 Stel , dan geldt dat , dus 2v = 4, dus v = 2 Wat is dus de gezochte waarde van x?

Ik heb wat ingevuld, maar ik durf niet met zekerheid te zeggen dat ik er achter kan staan..

arno
Vergevorderde
Vergevorderde
Berichten: 1867
Lid geworden op: 25 dec 2008, 16:28
Locatie: Beek en Donk, Noord-Brabant

Re: Logaritmen bereken x

Bericht door arno » 27 nov 2016, 20:23

Westerwolde schreef:
arno schreef:Stel , dan geldt dat , dus 3u = 8, dus u = 5 Stel , dan geldt dat , dus 2v = 4, dus v = 2 Wat is dus de gezochte waarde van x?

Ik heb wat ingevuld, maar ik durf niet met zekerheid te zeggen dat ik er achter kan staan..
Bedenk dat uit volgt dat , dus uit volgt dat 3u = ..., dus u = ...
en uit volgt dat 2v = ..., dus v = ... Bepaal nu x als je weet dat u = v.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

SafeX
Moderator
Moderator
Berichten: 14247
Lid geworden op: 29 dec 2005, 11:53

Re: Logaritmen bereken x

Bericht door SafeX » 27 nov 2016, 20:41

Westerwolde schreef:Ja dat is : ^g log a = x <=> g^x = a
Mooi, wat zegt deze definitie ...
Eigenlijk staat er een verg met een log gelijk aan x, rechts staat ook een verg met x in de exponent, maw een log is een exponent!
Begrijp je dit? Zo ja geef commentaar ...

Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Logaritmen bereken x

Bericht door Westerwolde » 28 nov 2016, 07:52

arno schreef:
Westerwolde schreef:
arno schreef:Stel , dan geldt dat , dus 3u = 8, dus u = 5 Stel , dan geldt dat , dus 2v = 4, dus v = 2 Wat is dus de gezochte waarde van x?

Ik heb wat ingevuld, maar ik durf niet met zekerheid te zeggen dat ik er achter kan staan..
Bedenk dat uit volgt dat , dus uit volgt dat 3u = ..., dus u = ...
en uit volgt dat 2v = ..., dus v = ... Bepaal nu x als je weet dat u = v.

Als ik het goed begrijp moet ik openstaande punten zo invullen ;


2^3u = x => 3u = ^2log(x) => v= ^2log 3

2^2v = 25 => 2v= ^2log 25 => v= ^2log 25

Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Logaritmen bereken x

Bericht door Westerwolde » 28 nov 2016, 07:54

SafeX schreef:
Westerwolde schreef:Ja dat is : ^g log a = x <=> g^x = a
Mooi, wat zegt deze definitie ...
Eigenlijk staat er een verg met een log gelijk aan x, rechts staat ook een verg met x in de exponent, maw een log is een exponent!
Begrijp je dit? Zo ja geef commentaar ...

Wat deze definitie zegt lukt me niet om in woorden uit te drukken, maar ik kan een voorbeeld geven;

2log 8 = 3 <=> 2^3 = 8


Ja ik begrijp je uitleg.

SafeX
Moderator
Moderator
Berichten: 14247
Lid geworden op: 29 dec 2005, 11:53

Re: Logaritmen bereken x

Bericht door SafeX » 28 nov 2016, 08:01

Westerwolde schreef:bereken x uit : ^4log(25) = ^8log(x)
Als je nu links en rechts RR 4 toepast met p=2, wat komt er dan te staan ...

Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Logaritmen bereken x

Bericht door Westerwolde » 28 nov 2016, 09:32

SafeX schreef:
Westerwolde schreef:bereken x uit : ^4log(25) = ^8log(x)
Als je nu links en rechts RR 4 toepast met p=2, wat komt er dan te staan ...

Links:

^g log (a) = ^p log (a) / ^p log (g)
=> ^2log(a) / ^2log(g)
=> ^2log(25) / ^2log(2)


Rechts:

^g log (a) = ^p log (a) / ^p log (g)
=> ^2log(a) / ^2log(g)
=> ^2log(x) / ^2log(8)

arno
Vergevorderde
Vergevorderde
Berichten: 1867
Lid geworden op: 25 dec 2008, 16:28
Locatie: Beek en Donk, Noord-Brabant

Re: Logaritmen bereken x

Bericht door arno » 28 nov 2016, 14:55

Westerwolde schreef:Links:

^g log (a) = ^p log (a) / ^p log (g)
=> ^2log(a) / ^2log(g)
=> ^2log(25) / ^2log(2)
Nee, g is links 4, dus je moet delen door... Welk getal krijg je dan?
Westerwolde schreef:Rechts:

^g log (a) = ^p log (a) / ^p log (g)
=> ^2log(a) / ^2log(g)
=> ^2log(x) / ^2log(8)
Dit klopt wel. Wat is de waarde van , dus door welk getal deel je hier?
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

arno
Vergevorderde
Vergevorderde
Berichten: 1867
Lid geworden op: 25 dec 2008, 16:28
Locatie: Beek en Donk, Noord-Brabant

Re: Logaritmen bereken x

Bericht door arno » 28 nov 2016, 15:07

Westerwolde schreef:
arno schreef: Bedenk dat uit volgt dat , dus uit volgt dat 3u = ..., dus u = ...
en uit volgt dat 2v = ..., dus v = ... Bepaal nu x als je weet dat u = v.

Als ik het goed begrijp moet ik openstaande punten zo invullen ;


2^3u = x => 3u = ^2log(x)
Dit klopt, dus u = ⅓∙3u = ...
Westerwolde schreef:2^2v = 25 => 2v= ^2log 25
Dit klopt, dus v = ½∙v = ... Bepaal nu x als je weet dat u = v.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

Plaats reactie