Afgeleide goniometrische functie

Dit forum is voor het voortgezetonderwijs (of 2de/3de graad ASO), als je in de bovenbouw zit. We gaan er vanuit dat je een Grafische Rekenmachine hebt.
Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Afgeleide goniometrische functie

Bericht door Westerwolde » 08 mar 2017, 14:46

SafeX schreef:
Westerwolde schreef:Het enige wat ik hier nu in zie is de vorm: (a-b)^2= a^2-2ab+b^2
Dit is ok en vind je het nu niet voor de hand liggend om a en b weer in te vullen?
Ja dat is wel voor de hand liggend, dat wordt dan:

cos^2(x) -2cos(x)*sin(x) +sin^2(x)

SafeX
Moderator
Moderator
Berichten: 14224
Lid geworden op: 29 dec 2005, 11:53

Re: Afgeleide goniometrische functie

Bericht door SafeX » 08 mar 2017, 15:07

Westerwolde schreef:cos^2(x) -2cos(x)*sin(x) +sin^2(x)
Ok! En kan je dit niet vereenvoudigen met jouw bekende formules?

Westerwolde
Vergevorderde
Vergevorderde
Berichten: 363
Lid geworden op: 11 mar 2015, 13:26

Re: Afgeleide goniometrische functie

Bericht door Westerwolde » 08 mar 2017, 15:23

SafeX schreef:
Westerwolde schreef:cos^2(x) -2cos(x)*sin(x) +sin^2(x)
Ok! En kan je dit niet vereenvoudigen met jouw bekende formules?

Ja daar zeg je wat :

cos^2(x) - sin^2(x) = 1
en 2cos(x)*sin(x) = -sin(2x)

dat geeft de noemer: 1-sin(2x)

en gehele afgeleide van 1+tan(x) / 1-tan(x) = 2/ 1-sin(2x)

Tjonge ik dacht dat er geen einde aan kwam :o

Bedankt voor jullie hulp (en geduld )!!

SafeX
Moderator
Moderator
Berichten: 14224
Lid geworden op: 29 dec 2005, 11:53

Re: Afgeleide goniometrische functie

Bericht door SafeX » 08 mar 2017, 16:35

Westerwolde schreef:
cos^2(x) - sin^2(x) = 1
en 2cos(x)*sin(x) = -sin(2x)

dat geeft de noemer: 1-sin(2x)
Er staan nogal wat fouten hierboven, ga dat nog eens na!

en gehele afgeleide van 1+tan(x) / 1-tan(x) = 2/ 1-sin(2x)
En dit, hoe goed bedoeld, is volstrekt fout, denk eens aan haakjes. Een teveel aan haakjes verwart, maar te weinig haakjes zijn gewoon fout.

Opm: denk nog eens aan je verzuchting. Waar gaat het fout? En wat is er nu echt nieuw geweest?

Plaats reactie