Asymptoten vd rationale functie

Dit forum is voor het voortgezetonderwijs (of 2de/3de graad ASO), als je in de bovenbouw zit. We gaan er vanuit dat je een Grafische Rekenmachine hebt.
Plaats reactie
FormerPonyGodfather
Nieuw lid
Nieuw lid
Berichten: 4
Lid geworden op: 16 jan 2020, 17:18

Asymptoten vd rationale functie

Bericht door FormerPonyGodfather » 25 mar 2020, 11:46

Door de hele coronatoestand moeten we natuurlijk een aantal taken maken en ook voor wiskunde. Op deze taak staat deze bepaalde onderstaande vraag die ik niet echt begrijp:

Bereken a, b en c als je weet dat de rechte met vergelijking y = 2x+1 een schuine asymptoot is van de kromme met vergelijking y = ax^2 -4x + 3 / bx^2 -2x + c . Heeft deze kromme nog andere asymptoten? Bereken ze dan.

Ik was aan het denken aangezien dit een rationale functie is te werken met Euclidische deling i.p.v. limietberekening maar kom er niet echt uit.

Hopelijk zijn jullie allemaal gezond en wel en alvast bedankt! :)

arie
Moderator
Moderator
Berichten: 3528
Lid geworden op: 09 mei 2008, 09:19

Re: Asymptoten vd rationale functie

Bericht door arie » 25 mar 2020, 17:20

Het kan via deling:
Je wil de functie \(y = \frac{ax^2-4x+3}{bx^2-2x+c}\) dan herschrijven als

\(y = p\cdot x + q + g(x)\)

waarbij de laatste term (= de functie g(x)) naar nul gaat voor x naar oneindig.

De term px (met p ongelijk nul) kan je alleen uit de breuk delen als de graad van de teller 1 hoger is dan de graad van de noemer, dus moet b=0 zijn.
Andere redenatie waarom b nul moet zijn:
- als a en b beide ongelijk nul zijn, waartoe nadert y dan als x naar oneindig gaat?
- en wat gebeurt er als b ongelijk nul is en a=0 ?

Je moet dus deze deling uitvoeren:

\(y = \frac{ax^2-4x+3}{-2x+c}\)

Kom je zo verder?

FormerPonyGodfather
Nieuw lid
Nieuw lid
Berichten: 4
Lid geworden op: 16 jan 2020, 17:18

Re: Asymptoten vd rationale functie

Bericht door FormerPonyGodfather » 27 mar 2020, 15:49

Ja, nu kom ik er. Het probleem zat vooral in die klik maken dat b = 0 moet zijn in dit geval, denk ik.
Heel erg bedankt :D

Plaats reactie