De slak op het elastiek

Heb je een leuke wiskunde puzzel of een mooi vraagstuk gevonden en wil je die met ons delen? Post het hier.

De slak op het elastiek

Berichtdoor antamaris » 10 Dec 2016, 19:31

Goedenavond,

Ik weet niet of dat hier mag , maar ik heb nog een vreemde vraag cq puzzel.

Dit gaat over een slak aan elastiek, ook hier zal het dan wel weer via een programmaatje op internet op te lossen zijn of is dit niet mogelijk.

Het volgende dus:
Stel je voor: een touw van 1 meter lang. En niet zo maar een touw, nee: het bijzondere aan dit touw is dat het van elastiek is gemaakt dat je oneindig kunt uitrekken, zonder dat het breekt. De uiteinden van dit touw noemen we A en B. Het touw is bij A vastgemaakt. Tevens bevindt zich bij uiteinde A, hoe verrassend: een slak.
Op een dag, laten we het dag 1 noemen, gebeurt er het volgende: de slak kruipt 5 cm richting B. Gelijk hierna wordt er bij B aan het touw getrokken, zodat het touw 1 meter langer wordt.
De volgende dag gebeurt er precies hetzelfde: de slak kruipt 5 cm richting B, en er wordt opnieuw bij B getrokken, zodat het touw weer een meter langer wordt. Het touw is na dag 2 dus al 3 meter lang.
De volgende dag... affijn, het patroon is duidelijk. De hamvraag: bereikt de slak ooit B? Het verrassende antwoord is ja! Maar op welke dag?
Je hoeft geen rekening te houden met fysieke beperkingen of randvoorwaarden zoals de kromming van de aarde en dergelijke. De puzzel is puur wiskundig van aard.
antamaris
Nieuw lid
Nieuw lid
 
Berichten: 4
Geregistreerd: 09 Dec 2016, 14:17

Re: De slak op het elastiek

Berichtdoor arie » 11 Dec 2016, 09:28

Kijk per dag naar het gedeelte van de afstand AB die de slak aflegt, en tel die afstand steeds bij het totaal (= het reeds afgelegde gedeelte) op.

Voorbeeld voor een snellere slak, die 50 cm per dag aflegt:

Dag 1 is het elastiek 100 cm, de slak legt 50 cm af, en is dan op 50/100 = de helft van AB, en omdat de slak juist gestart is, is dit ook de totale afstand na dag 1.
Dan wordt het elastiek 100 cm uitgerekt, maar daarmee blijft de slak op de helft van AB.

Dag 2 is het elastiek 200 cm, de slak legt 50 cm af, en is dan 50/200 deel van de afstand van AB dichter bij B, de totale afstand na dag 2 is dus 50/100 + 50/200 = 0.75 (= 75 % van de afstand)
Dan wordt het elastiek weer 100 cm uitgerekt, maar daarmee blijft de slak op de 0.75 van AB.

Dag 3 is het elastiek 300 cm, de slak legt 50 cm af, en is dan 50/300 deel van de afstand van AB dichter bij B, de totale afstand na dag 2 is dus 50/100 + 50/200 + 50/300 = 0.916666... (= 91.66 % van de afstand)
Dan wordt het elastiek weer 100 cm uitgerekt, maar daarmee blijft de slak op de 0.916666... van AB.

etc.

Merk op dat je de afgelegde afstand ook nog anders kan schrijven door 50/100 buiten haakjes te halen:



Kom je hiermee verder?
arie
Moderator
Moderator
 
Berichten: 2946
Geregistreerd: 09 Mei 2008, 09:19

Re: De slak op het elastiek

Berichtdoor David » 11 Dec 2016, 11:19

Is in de noemers de lengtes op verschillende dagen wel juist?

Ik zou voor dag twee schrijven, als je met relatieve afstanden wilt werken:
De slak heeft (50/200 + 50/200) deel = 1/2 deel van de afstand afgelegd. Vergelijkbaar voor elke dag is de helft van de afstand afgelegd.

Mochten we toch de lengtes op de verschillende dagen kunnen gebruiken, zou lenen makkelijk worden voor degene die leent.
Elke dag leen je €100 en betaal je €50 terug van de lening. Zonder verdere transacties, betaal als ooit af? Op het moment dat je hebt afbetaald, en je blijft hetzelfde lenen en terugbetalen als je deed, maak je dan nog schuld?

Numberphile op YouTube laat een vergelijkbare vraag met antwoord zien: https://youtu.be/4k1jegU4Wb4?t=3m
Misschien hangt het antwoord af van de context?
Stap 1 van het oplossen van een probleem is te erkennen dat je een probleem hebt.
(Raffiek Torreman)
David
Moderator
Moderator
 
Berichten: 4935
Geregistreerd: 14 Mei 2009, 16:22

Re: De slak op het elastiek

Berichtdoor arie » 11 Dec 2016, 13:13

Ik heb de beschrijving gevolgd, behalve de snelheid (ik nam een turbo-slak die 50 cm per dag aflegt).
Alle afstanden zijn in cm.

antamaris schreef:Stel je voor: een touw van 1 meter lang. En niet zo maar een touw, nee: het bijzondere aan dit touw is dat het van elastiek is gemaakt dat je oneindig kunt uitrekken, zonder dat het breekt. De uiteinden van dit touw noemen we A en B. Het touw is bij A vastgemaakt. Tevens bevindt zich bij uiteinde A, hoe verrassend: een slak.

x_A = 0
x_B = 100
x_slak = 0

antamaris schreef:Op een dag, laten we het dag 1 noemen, gebeurt er het volgende: de slak kruipt 50 cm richting B.

x_A = 0
x_B = 100
x_slak = 50 (voor de snelle slak)
relatieve positie van de slak ten opzichte van B: 50/100 = 0.50

antamaris schreef:Gelijk hierna wordt er bij B aan het touw getrokken, zodat het touw 1 meter langer wordt.

x_A = 0
x_B = 200
x_slak = 100 (de slak blijft op 50% van de totale afstand)
relatieve positie van de slak ten opzichte van B: 100/200 = 0.50

antamaris schreef:De volgende dag gebeurt er precies hetzelfde: de slak kruipt 50 cm richting B,

x_A = 0
x_B = 200
x_slak = 150
vandaag afgelegd: 50/200
relatieve positie van de slak ten opzichte van B: 150/200 = 0.75

antamaris schreef:en er wordt opnieuw bij B getrokken, zodat het touw weer een meter langer wordt. Het touw is na dag 2 dus al 3 meter lang.

x_A = 0
x_B = 300
x_slak = 225
relatieve positie van de slak ten opzichte van B: 225/300 = 0.75


Na dag 1 is de slak dus op relatieve positie 0.50:



Na dag 2 op 0.75



etc

We zoeken dan de kleinste n zodanig dat



ofwel de kleinste n zodanig dat



en dit blijkt voor n=4.
Dus in 4 dagen is de snelle slak in punt B.

In je film benaderen ze dit met e^2 ~= 7, maar voor kleine getallen laat die benadering duidelijk nog te wensen over.
arie
Moderator
Moderator
 
Berichten: 2946
Geregistreerd: 09 Mei 2008, 09:19

Re: De slak op het elastiek

Berichtdoor David » 11 Dec 2016, 15:45

arie schreef:x_slak = 100 (de slak blijft op 50% van de totale afstand)

Ah, dat verklaart het voor me. Als het touw een meter wordt uitgerekt dan wordt de 'afgelegde' afstand door de slak ook groter. Die eigenschap van het touw had ik niet uit de omschrijving gelezen en niet uit het filmpje gevonden, maar is misschien wel wat je mag verwachten. Dank je wel!
Stap 1 van het oplossen van een probleem is te erkennen dat je een probleem hebt.
(Raffiek Torreman)
David
Moderator
Moderator
 
Berichten: 4935
Geregistreerd: 14 Mei 2009, 16:22

Re: De slak op het elastiek

Berichtdoor antamaris » 11 Dec 2016, 20:18

Bedankt voor de info en uitleg , maar ik zie het niet zitten.
Kunt U mij het antwoord geven dan ben ik allang blij.
Het is nl een vraag uit het GEOCACHE spel.
https://www.geocaching.com/geocache/GC6BX4F_de-slak

Vrgr Antamaris,
antamaris
Nieuw lid
Nieuw lid
 
Berichten: 4
Geregistreerd: 09 Dec 2016, 14:17

Re: De slak op het elastiek

Berichtdoor arie » 11 Dec 2016, 21:27

Op dit forum plaatsen we geen antwoorden op puzzels zoals geocache puzzels of puzzels van puzzelsites.
Dit is niet leuk voor de makers van deze puzzels, die er moeite en tijd voor nemen om hun puzzels te publiceren.

Aan de andere kant is het een zeer bekend wiskundig probleem, ruim terug te vinden op het net, en staat het antwoord bovendien al bijna hierboven:

Voor de slak die 50 cm per dag gaat zochten we de kleinste n zodanig dat







Voor de 50 cm/dag slak is het antwoord dus 4 dagen.


Voor een slak die 10 cm per dag gaat, zoeken we de kleinste n zodanig dat







Voor de 10 cm/dag slak is het antwoord dus 12367 dagen.

Met de hand optellen van al die breuken is niet te doen, maar dit kan weer via
http://www.wolframalpha.com/
Voer in het invoerveld in:
sum i=1 to 12366 (1.0 / i)
en je krijgt de optelling van die 12366 breuken: 9.9999621479...
Voer in het invoerveld in:
sum i=1 to 12367 (1.0 / i)
en je krijgt de optelling van die 12367 breuken: 10.000043008...


Voor jouw probleem, een slak die 5 cm per dag gaat, zoeken we de kleinste n zodanig dat



Je moet nu dus het getal n zoeken, zodanig dat
sum i=1 to n (1.0 / i)
net boven de 20 komt.
Nu is n een getal van 9 cijfers.
Lukt het je om dat met Wolfram Alpha te vinden?
arie
Moderator
Moderator
 
Berichten: 2946
Geregistreerd: 09 Mei 2008, 09:19

Re: De slak op het elastiek

Berichtdoor parref » 11 Dec 2016, 22:45

Hoi allen,

Ter informatie : dit is een leuk maar bekend vraagstukje.
Zie b.v. op het internet : "Wiskunde Raadsels-hhofstede.nl." waar onder de deelvraag "De slak op het touw" zowat dezelfde vraag naar voren komt met antwoord.
Groetjes,
Parref.
parref
Nieuw lid
Nieuw lid
 
Berichten: 22
Geregistreerd: 08 Sep 2013, 00:05

Re: De slak op het elastiek

Berichtdoor David » 12 Dec 2016, 20:05

Je kan misschien ook kijken in de OEIS. Zoek eens naar 12367.
Stap 1 van het oplossen van een probleem is te erkennen dat je een probleem hebt.
(Raffiek Torreman)
David
Moderator
Moderator
 
Berichten: 4935
Geregistreerd: 14 Mei 2009, 16:22


Terug naar Wiskundige puzzels

Wie is er online?

Gebruikers in dit forum: Yahoo [Bot] en 3 gasten

Wie is er online?

Er zijn in totaal 4 gebruikers online :: 1 geregistreerd, 0 verborgen en 3 gasten (Gebaseerd op de gebruikers die actief waren gedurende 5 minuten)
De meeste gebruikers ooit tegelijkertijd online was 649 op 31 Okt 2014, 18:45

Gebruikers in dit forum: Yahoo [Bot] en 3 gasten
Copyright © 2009 Afterburner - Free GPL Template. All Rights Reserved.