verdelingen op een cirkel

Wiskunde is niet alleen een vak op school. Kom je ergens in de praktijk (bijvoorbeeld tijdens je werk) een wiskundig probleem tegen dan kun je hier om hulp vragen.

verdelingen op een cirkel

Berichtdoor Daniël » 28 Jun 2012, 18:25

Hallo

Weet iemand hoe je de omtrek van een moer kunt bepalen om preciese verdelingen te maken ?
Afbeelding

vb variabelen:
    diameter (D) moer = 23.50mm
    diameter (d) uitsparing = 1.5mm
    aantal uitsparingen (n) = 4
    afstand tussen uitsparingen (xa)
    omtrek moer (om)
    rest (r)

berekening:

om = D*PI
r = om/(n*d)
xa = r/n
p = d+xa

nu met getallen:
73.82742046 = 23.5 * 1.5
67.82742046 = 73.82742046 - (4*1.5)
16,956855115 = 67.82742046 / 4
18,456855115 = 1.5 + 16,956855115

m.a.w. moet de passerpunt telkens op 18,45mm gezet worden om er een freesgat van 1.5mm te maken met gelijke tussenstukken.

Wanneer ik echter deze berekening in praktijk omzet klopt dit niet. Met een groter aantal kom ik zelfs plaats tekort. De afstand tussen mijn passerpunten blijkt te groot te zijn.

Ik vermoed dat de berekening van de omtrek niet van toepassing is voor deze praktijkoefening.

Kan iemand mij hierbij helpen aub ?

Alvast dank.

Daniël
Daniël
Nieuw lid
Nieuw lid
 
Berichten: 3
Geregistreerd: 28 Jun 2012, 16:12

Re: verdelingen op een cirkel

Berichtdoor arie » 28 Jun 2012, 21:07

Stel de buitendiameter (D) moer = 23.50 mm
Ik vermoed dat je dan de passer op de buitencirkel wil zetten en achtereenvolgens n gelijke delen wil afmeten.
Hiervoor kan je de koorde-formule gebruiken, zie bijvoorbeeld:
http://nl.wikipedia.org/wiki/Koorde

Voor je hoek alfa geldt dan:



en de koordlengte k = de passerafstand die je zoekt:



waarin D de buitendiameter.

In jouw voorbeeld met D=23.50 en n=4:



Als je deze afstand op je passer afmeet, en daarmee de buitencirkel in stukken verdeelt, dan zou je goed moeten uitkomen.

Je markeringspunten op de buitencirkel zijn dan de plaatsen waar je kan gaan frezen.

Bedoel je dit?
arie
Moderator
Moderator
 
Berichten: 3017
Geregistreerd: 09 Mei 2008, 09:19

Re: verdelingen op een cirkel

Berichtdoor Daniël » 29 Jun 2012, 08:48

Precies Arie, grote dank.

Maar wat als het aantal freesgaten (n) ongekend is en de freesopening vastgesteld is op bv 1.5mm met een vaste tussenafstand van bv 2mm ?
Ik moet dan zien te weten hoeveel freesgaten ik kan maken met gelijke tussenafstanden.

Code: Alles selecteren
n = D.sin(PI /(d + xa)) 


xa = afstand tussen de freesgaten en hier dus 2mm
maar nu moet ik nog mijn restwaarde bepalen en verdelen.


Code: Alles selecteren
r = (D.sin(PI))-(n.( d + xa))
// te verdelen restwaarde
... en dan zit ik blijkbaar weer in de mist want mijn resultaat klopt niet.

:?
Daniël
Nieuw lid
Nieuw lid
 
Berichten: 3
Geregistreerd: 28 Jun 2012, 16:12

Re: verdelingen op een cirkel

Berichtdoor arie » 29 Jun 2012, 09:50

Ik neem aan dat je de afstanden via rechte lijnen meet, dus via de koorden en niet via de omtrek.
Je hebt in dit geval 2 verschillende koorden:
- k1 van de freesopening
- k2 van de tussenafstand

Met de koorden-formule kan je van beide de bijbehorende hoek bepalen:



en



k1, k2 en D zijn bekend, dus je kan alfa1 en alfa2 bepalen.

alfa1 en alfa2 moeten elkaar afwisselen, dus je moet kijken hoe vaak
(alfa1 + alfa2) in de cirkel (=2pi) past.
Dit is



keer, waarbij de haken de floor-functie voorstellen = alle decimalen afkappen = alleen naar het gehele gedeelte van het getal kijken = alles afronden naar beneden.


Voorbeeld:
D = 23.50
k1 = 1.5
k2 = 2.0







Je hebt dus plaats voor 21 gaten.
De afstanden van deze gaten bepaal je weer met de formule uit mijn eerste post:



Als je deze afstand tussen je passer neemt en alle punten aftekent op de buitencirkel heb je de 21 punten waarop je kan frezen.
arie
Moderator
Moderator
 
Berichten: 3017
Geregistreerd: 09 Mei 2008, 09:19

Re: verdelingen op een cirkel

Berichtdoor arie » 29 Jun 2012, 10:06

PS:
Indien je ook de uiteindelijke tussenafstanden wilt weten:
- bepaal dan eerst wat de gecorrigeerde hoek alfa2 is
- bepaal daarmee de nieuwe koorde via de koorden-formule

In je voorbeeld:
De 21 gaten halen 21*alfa1 van je cirkel af, blijft over voor de 21 tussenafstanden:



dus gecorrigeerde alfa2 = 3.6005 / 21 = 0.17145
waardoor de werkelijke tussenafstand bij regelmatige verdeling van de gaten wordt:

arie
Moderator
Moderator
 
Berichten: 3017
Geregistreerd: 09 Mei 2008, 09:19

Re: verdelingen op een cirkel

Berichtdoor Daniël » 01 Jul 2012, 16:23

Hoho Arie.
Superbedankt man voor deze zeer heldere uitleg. Heb zo veel bijgeleerd.
Alles werkt goed en in de praktijk klopt alles prima.

Respect,

Daniël.
Daniël
Nieuw lid
Nieuw lid
 
Berichten: 3
Geregistreerd: 28 Jun 2012, 16:12

Re: verdelingen op een cirkel

Berichtdoor arie » 02 Jul 2012, 12:04

OK
Mooi dat het werkt!
arie
Moderator
Moderator
 
Berichten: 3017
Geregistreerd: 09 Mei 2008, 09:19

Re: verdelingen op een cirkel

Berichtdoor arie » 08 Mrt 2017, 11:09

HarryHarry17 schreef:Voor een project waar ik aan werk, zoek ik een methode om een aantal gaten over een omtrek van een cirkel te verdelen en ook de afstand van hart tot hart te kunnen bepalen. Op 8 juni 2012 stond daar een formule waar mee je dit kun berekenen.

Duidelijk toch? inderdaad. maar mijn vraag is nu: Hoe typ je dat allemaal in je rekenmachine? Ik heb een vrij recente wetenschappelijke calculator van Casio en daar kun je bv 2pi invoeren zoals je dat schrijft. Maar dat kreng kan geen sinus uitrekenen, dan loopt ie vast.
Ik heb nog een calculator die dat wel kan ( Casio FX82) alleen de waarde 2 pi moet ik nu op een andere wijze bepalen.

Zou u voor mij dit willen uitschrijven zodat ik die formules zo kan in typen?
U mag dezelfde waarden gebruiken als in het forum staat, het gaat mij er om hoe ik deze formule moet gebruiken. mijn probleem verder is dezelfde als Daniel de topic starter. U zou mij er erg mee helpen.


In dit voorbeeld werkten we met hoeken in radialen.
Op de fx-82 kan je dit instellen met:
[MODE] [MODE] 2


2 x [SHIFT] [sin-1] ( 1.5 / 23.5 ) =
(waarbij x het maal-teken is)


2 x [SHIFT] [sin-1] ( 2.0 / 23.5 ) =


2 x [SHIFT] [ ] / ( 0.1277 + 0.1704 )
en neem daarvan het gedeelte voor de komma (dat is in dit voorbeeld 21).

Als het goed is kom je zo op dezelfde antwoorden uit.

Kom je hiermee verder?
arie
Moderator
Moderator
 
Berichten: 3017
Geregistreerd: 09 Mei 2008, 09:19

Re: verdelingen op een cirkel

Berichtdoor HarryHarry17 » 09 Mrt 2017, 13:39

Beste Arie,

heel erg bedankt zo ver.

als ik ik alpha 1 probeer te berekenen geef mijn rekenmachine MATH ERROR.
wat doe ik nu fout?
HarryHarry17
Nieuw lid
Nieuw lid
 
Berichten: 2
Geregistreerd: 07 Mrt 2017, 16:01

Re: verdelingen op een cirkel

Berichtdoor arie » 09 Mrt 2017, 18:38

Ik vermoed dat je geen haakjes gebruikt hebt:
zonder haakjes, dus zo:
[SHIFT] [sin-1] 1.5 / 23.5
rekent je rekenmachine dit uit:
([SHIFT] [sin-1] 1.5) / 23.5
en dat geeft een MARH ERROR.

Met haakjes, dus zo:
[SHIFT] [sin-1] ( 1.5 / 23.5 )
zou je het goede antwoord moeten krijgen.

Klopt dit?
arie
Moderator
Moderator
 
Berichten: 3017
Geregistreerd: 09 Mei 2008, 09:19

Re: verdelingen op een cirkel

Berichtdoor HarryHarry17 » 10 Mrt 2017, 10:29

Dank je arie, nu lukt het wel.

niet vergeten de uitkomst met x2 te vermenigvuldigen!

Groetjes!
HarryHarry17
Nieuw lid
Nieuw lid
 
Berichten: 2
Geregistreerd: 07 Mrt 2017, 16:01


Terug naar Praktijkproblemen

Wie is er online?

Gebruikers in dit forum: Geen geregistreerde gebruikers en 3 gasten

Wie is er online?

Er zijn in totaal 3 gebruikers online :: 0 geregistreerd, 0 verborgen en 3 gasten (Gebaseerd op de gebruikers die actief waren gedurende 5 minuten)
De meeste gebruikers ooit tegelijkertijd online was 649 op 31 Okt 2014, 18:45

Gebruikers in dit forum: Geen geregistreerde gebruikers en 3 gasten
Copyright © 2009 Afterburner - Free GPL Template. All Rights Reserved.