Ypart mag niet Yhomogeen zijn, wel een gedeelte?

Het forum voor overige vragen betreffende wiskunde uit het hoger onderwijs.
Plaats reactie
Pieter_Zwaan
Nieuw lid
Nieuw lid
Berichten: 1
Lid geworden op: 19 mar 2016, 13:04

Ypart mag niet Yhomogeen zijn, wel een gedeelte?

Bericht door Pieter_Zwaan » 19 mar 2016, 13:31

Mijn vraag is als volgt: De regel is dat bij differentiaalvergelijkingen Y=Yhomogeen+Ypartieel
Hierbij mag Ypartieel niet hetzelfde zijn als Yhomogeen. Bij de volgende situatie is Ypartieel hetzelfde als een gedeelte van Yhomogeen. Mag dit wel of niet?
De som:
Los de onderstaande differentiaalvergelijking met de gegeven voorwaarden op (y is een functie van x).
y''-9y= 2
y(0)= 1 en y'(0)= -3

Mijn uitwerking:
K.V.: y’’p-9yp=0
λ^(2)-9 =0
(λ-3)( λ+3)=0 λ=3 Of λ=-3
Yhom= C1•e^(3x) +C2•e^(-3x)
Yp= A•e^(3x)
y’’p-9yp= 2•e^(3x)
Ae3x-9Ae3x= 2•e^(3x)
-8Ae3x= 2•e^(3x)
Coëfficiënt van e^(3x): -8=8 A=-1
Yp=-e^(3x)
Y= Yhom+Yp
de algemene oplossing is y=C1•e^(3x) +C2•e^(-3x)-e^(3x)
y(0)= 1
y(0)= C1•e^(0)+C2•e^(0)-e^(0)
C1+C2-1=0 C1=1 Of C2=1
y’(0)=-3
y’(x)= 3C1•e^(3x)-3C2•e^(-3x)-3•e^(3x)
y’(0)= 3C1•e^(0)-3C2•e^(0)-3•e^(0)
y’(0)= 3C1-3C2-3 C2= 1 C1= 2
dus y= 2•e^(3x)+e^(-3x)-e^(3x)

Gebruikersavatar
wnvl
Vergevorderde
Vergevorderde
Berichten: 1493
Lid geworden op: 05 okt 2011, 16:30

Re: Ypart mag niet Yhomogeen zijn, wel een gedeelte?

Bericht door wnvl » 19 mar 2016, 16:40

Hierbij mag Ypartieel niet hetzelfde zijn als Yhomogeen. Bij de volgende situatie is Ypartieel hetzelfde als een gedeelte van Yhomogeen. Mag dit wel of niet?

Op zich mag dat, maar dat is niet de bedoeling. Het heeft geen zin.



Ypart slaagt niet op Ypartieel maar op Yparticulier.

Het is niet

y’’p-9yp= 2•e^(3x)

maar

y’’p-9yp= 2.

Vanaf daar loopt het fout in je oefening...

De particuliere oplossing is gewoon van de vorm ypart=A, invullen en je komt op ypart=...

Plaats reactie