Hallo allemaal,
Langzamerhand ben ik aan het toewerken naar de stelling van Moivre. Ik heb nog een paar stappen te gaan.
Dit begrijp ik echter niet:
Ik kom uit op:
Terwijl het juiste antwoord
Moet zijn.
Het zit hem in de conversie van de polaire argument/angle: .
Volgens kun je de hoeken bij elkaar optellen bij een wortel/exponent.
Dus:
Waar gaat het bij mij fout?
Alvast bedankt!
Stelling van Moivre
Re: Stelling van Moivre
Marco Craamer schreef: ↑22 apr 2023, 11:41Volgens kun je de hoeken bij elkaar optellen bij een wortel/exponent.
\({(1 \angle \theta)}^n = 1^n \angle n\theta\)
Voorbeeld:
Als
\(1 \angle \theta = \cos \theta + i \sin \theta\)
dan is
\((1 \angle \theta)^2 = (\cos \theta + i \sin \theta)^2\)
\(= \cos^2 \theta +2 i \sin \theta \cos \theta + i^2 \sin^2 \theta\)
\(= \cos^2 \theta - \sin^2 \theta +2 i \sin \theta \cos \theta \)
\(= \cos 2\theta + i\sin 2\theta \) (dit weten we vanuit de goniometrie)
\(= 1 \angle 2\theta\)
-
- Nieuw lid
- Berichten: 5
- Lid geworden op: 17 apr 2023, 09:01
Re: Stelling van Moivre
Dank je wel!
Ja, dat is inderdaad een duidelijk voorbeeld.
Maar dan de logica erachter. Bijvoorbeeld deze:
Dit wordt dus:
Oftewel:
Met andere woorden, hier wordt wel het argument (90) gedeeld door de macht/exponent (3).
Daarom snap ik niet dat bij bovenstaand voorbeeld met n vermenigvuldigd wordt.
Met een vriendelijke groet,
Marco
Ja, dat is inderdaad een duidelijk voorbeeld.
Maar dan de logica erachter. Bijvoorbeeld deze:
Dit wordt dus:
Oftewel:
Met andere woorden, hier wordt wel het argument (90) gedeeld door de macht/exponent (3).
Daarom snap ik niet dat bij bovenstaand voorbeeld met n vermenigvuldigd wordt.
Met een vriendelijke groet,
Marco
Re: Stelling van Moivre
\(\sqrt[3]{z}=z^{1/3}\neq z^3\)
en
\(\frac{1}{3}\cdot 90^\circ = \frac{90^\circ}{3}\)
en
\(\frac{1}{3}\cdot 90^\circ = \frac{90^\circ}{3}\)
-
- Nieuw lid
- Berichten: 5
- Lid geworden op: 17 apr 2023, 09:01
Re: Stelling van Moivre
Ja inderdaad, nu zie ik het...
Daar zit mijn denkfout!
Dank je wel!
Daar zit mijn denkfout!
Dank je wel!