functie op te lossen met staartdeling?
functie op te lossen met staartdeling?
Wie snapt deze:
Laat zien dat de functie f(x) = (x² + x - /(x - 1) ook geschreven kan worden als f(x) = 2x + 3 - 5/(x - 1)
Ik snap niet hoe je dit zo kan schrijven, Waarschijnlijk zie ik iets over het hoofd maar het hoort bij een hoofdstuk over staartdeling en heb het hier al mee proberen op te lossen maar ik kom niet van de ene op de ander.
Laat zien dat de functie f(x) = (x² + x - /(x - 1) ook geschreven kan worden als f(x) = 2x + 3 - 5/(x - 1)
Ik snap niet hoe je dit zo kan schrijven, Waarschijnlijk zie ik iets over het hoofd maar het hoort bij een hoofdstuk over staartdeling en heb het hier al mee proberen op te lossen maar ik kom niet van de ene op de ander.
Re: functie op te lossen met staartdeling?
(Om even de smiley weg te werken)grades schreef:Wie snapt deze:
Laat zien dat de functie f(x) = (x² + x - /(x - 1) ook geschreven kan worden als f(x) = 2x + 3 - 5/(x - 1)
Ik snap niet hoe je dit zo kan schrijven, Waarschijnlijk zie ik iets over het hoofd maar het hoort bij een hoofdstuk over staartdeling en heb het hier al mee proberen op te lossen maar ik kom niet van de ene op de ander.
Kun je de staartdeling volgens euclides uitvoeren, of eventueel met Horner.?
Euclides:
Horner:
Laatst gewijzigd door barto op 01 feb 2012, 14:34, 5 keer totaal gewijzigd.
Given that, by scientifical reasons, the state of an object is completely determined by the physical influence of its environment, the probability to roll six with a dice is either one or zero.
Re: functie op te lossen met staartdeling?
Dat klopt ook niet.
De teller is niet door de noemer deelbaar, want dan zou x=1 niet alleen een nulpunt van de teller zijn, maar ook van de noemer.
De breuk kan daarom wel vereenvoudigd worden, dus
,
waarbij je de eerste breuk nog moet vereenvoudigen.
De teller is niet door de noemer deelbaar, want dan zou x=1 niet alleen een nulpunt van de teller zijn, maar ook van de noemer.
De breuk kan daarom wel vereenvoudigd worden, dus
,
waarbij je de eerste breuk nog moet vereenvoudigen.
Re: functie op te lossen met staartdeling?
Hoezo?op=op schreef:Dat klopt ook niet.
De teller hoeft niet deelbaar te zijn door de noemer.
Bij beide rekenschema's kun je quotiënt en rest aflezen.
Dan stel je gewoon:
Given that, by scientifical reasons, the state of an object is completely determined by the physical influence of its environment, the probability to roll six with a dice is either one or zero.
Re: functie op te lossen met staartdeling?
Oke. Bedankt.
Maar wat ik nog niet snap is hoe je uit de ene formule de andere krijgt of dat ze gelijk zouden zijn.
Maar wat ik nog niet snap is hoe je uit de ene formule de andere krijgt of dat ze gelijk zouden zijn.
Re: functie op te lossen met staartdeling?
Je aanvulling kwam na mijn bijdrage en sloeg dus niet op jouw reactie, maar op het feit dat de uitkomst niet f(x) = 2x + 3 - 5/(x - 1) is.barto schreef:Hoezo?op=op schreef:Dat klopt ook niet.
De teller hoeft niet deelbaar te zijn door de noemer.
Bij beide rekenschema's kun je quotiënt en rest aflezen.
Dan stel je gewoon:
Dat deze uitkomst niet klopt kun je nagaan door een waarde in te vullen, b.v. x=2.
Re: functie op te lossen met staartdeling?
Je hebt:
Stel je nu , het deeltal.
En: , de deler.
Dan staat er:
Net zoals bij getallen kan een deling geschreven worden als quotiënt en rest.
Neem de deling . Het deeltal (D) is 44. De deler (d) is 3.
Het quotiënt (q) is 14. De rest (r) is 2.
We schrijven: of algemeen:
Bij functies gaat het net hetzelfde:
Het quotiënt en de rest bepaal je met de deling volgens Euclides of Horner.
Stel je nu , het deeltal.
En: , de deler.
Dan staat er:
Net zoals bij getallen kan een deling geschreven worden als quotiënt en rest.
Neem de deling . Het deeltal (D) is 44. De deler (d) is 3.
Het quotiënt (q) is 14. De rest (r) is 2.
We schrijven: of algemeen:
Bij functies gaat het net hetzelfde:
Het quotiënt en de rest bepaal je met de deling volgens Euclides of Horner.
Given that, by scientifical reasons, the state of an object is completely determined by the physical influence of its environment, the probability to roll six with a dice is either one or zero.
Re: functie op te lossen met staartdeling?
Grades, bedoel je:
Dat komt overeen met je antwoord.
Een derde methode is:
(ax + b)(x - 1) + c = 2x^2 + x - 8
Haakjes wegwerken en oplossen van links naar rechts. Dan door (x - 1) delen.
Dat komt overeen met je antwoord.
Een derde methode is:
(ax + b)(x - 1) + c = 2x^2 + x - 8
Haakjes wegwerken en oplossen van links naar rechts. Dan door (x - 1) delen.
Stap 1 van het oplossen van een probleem is te erkennen dat je een probleem hebt.
(Raffiek Torreman)
(Raffiek Torreman)
Re: functie op te lossen met staartdeling?
Wat denk je van:
Wat is de gedachtegang?
Merk op dat dit niet klopt met je (gegeven) antwoord ...
Wat is de gedachtegang?
Merk op dat dit niet klopt met je (gegeven) antwoord ...
Re: functie op te lossen met staartdeling?
Wat ik niet snap is dat er in het boek word beweerd.
dat je:
f(x) = (x² + x - /(x - 1)
ook kunt schrijven als:
f(x) = 2x + 3 - 5/(x - 1)
hoe ik de bovenste formule ook bereken, ik krijg de onderste er niet uit.
En zie dus niet hoe dit zou kunnen kloppen.
dat je:
f(x) = (x² + x - /(x - 1)
ook kunt schrijven als:
f(x) = 2x + 3 - 5/(x - 1)
hoe ik de bovenste formule ook bereken, ik krijg de onderste er niet uit.
En zie dus niet hoe dit zou kunnen kloppen.
Re: functie op te lossen met staartdeling?
poppetje moet zijn 8 )
Re: functie op te lossen met staartdeling?
Ben je er al uit ...grades schreef:Wat ik niet snap is dat er in het boek word beweerd.
dat je:
f(x) = (x² + x - /(x - 1)
ook kunt schrijven als:
f(x) = 2x + 3 - 5/(x - 1)
hoe ik de bovenste formule ook bereken, ik krijg de onderste er niet uit.
En zie dus niet hoe dit zou kunnen kloppen.